
1

1

Develop Web Pages

U:\Book\Book_05.doc

Develop Web Pages

What to Read in This Part
Develop Web Pages .. 1

1 Server Pages and Scripting .. 3
1.1 ASP, JSP and ABAP Servlets.. 3
1.2 CGI ... 3
1.3 Active Server pages (ASP and ASP.NET)... 4
1.4 Java Server Pages, JSP .. 4
1.5 Business Server Pages (BSP) ... 4
1.6 Server Components ... 4
1.7 Java Servlets.. 6
1.8 Demon... 6
1.9 EJB - Enterprise Java Beans ... 6
1.10 JAVA, COM and ABAP... 6

2 Web Pages With Active Server Pages.. 7
2.1 ASP Hello World... 7
2.2 Executing VB Script.. 7
2.3 Sending HTML Formatting ... 8
2.4 Capturing Commandline Parameters... 8
2.5 Global.asa – The ASP Autoexec File... 10
2.6 ASP Application Variables ... 12
2.7 Example: Display Server File List With ASP.. 13

3 Web Pages With Java Server Pages and Servlets... 15
3.1 Java.. 15
3.2 Java Utilities ... 16
3.3 Java.. 18
3.4 Java Utilities ... 20

4 Web Pages With XSL Stylesheets and XML .. 22
4.1 XSL Is Simple... 22
4.2 Our Goal: An Inventory Table of Animals... 22
4.3 Building The XML Farm.. 23
4.4 XSL – Step-by-step .. 24
4.5 XSL Templates... 24

Book 5

2 Fehler! Formatvorlage nicht definiert./Develop Web Pages

 of 28 Axel Angeli 12 March 2001
 2

4.6 XSL Applied To the Farm ... 25
 5

Fehler! Es wurden keine Einträge für das Inhaltsverzeichnis gefunden.

Server Pages and Scripting/Fehler! Formatvorlage nicht definiert. 3

 3

1 Server Pages and Scripting
Server pages are interfaces to executable programs or server processes that are accessible
through an HTTP request. There are different technologies for different platform, however the
interface is always very similar and compliant to CGI. Scripting allows to insert program
statements into static HTML code that is executed whenever the page is requested.

1.1 ASP, JSP and ABAP Servlets
There are a variety of concurring scripting technologies.

The communication between a HTML web browser and a dynamic web page 10
server is always directed through a scripting interface. Scripting means, that the
HTML page contains at least a single line of code that is interpreted by the web
servers script engines. Actually there is a big variety of different concurring script
languages.

Active Server Pages is Microsoft’s scripting solution as it is found in the Internet 15
Information Server. It is a designed as a plug-in solution, which means that the
server allows to install an arbitrary scripting interface. Practically an ASP
interfaces to Microsoft’s own scripting language: Visual Basic Script.

Java server Pages embed server-side Java code. The HTML page contains calls to
what is called Enterprise Java Beans. This solution is supported by most UNIX 20
based web servers and by the IBM Websphere web server.

These are JAVA object components designed to be called by an HTTP web
interface and to return valid HTTP messages to the requester. Servlets are written
in JAVA and compiled into JAVA packages. They are an immediate and superior
replacement of CGI components. Please mind the difference between an applet 25
and a servlet:

A servlet runs on the application server and returns valid presentation code, e.g.
an HTML page

An applet runs on the presentation server

SAP delivers its own web server, which uses ABAP as Scripting Interface. Instead 30
of learning any other language you can code your dynamic web code in an ABAP
dialect though.

The Common Gateway Interface CGI is the oldest interface for dynamic web
pages. It is actually a gateway that stores the interface definitions to program or
component calls. A CGI interface extracts program name and parameter from an 35
HTTP request and calls a matching compiled program on the web server.

1.2 CGI
The Common Gateway Interface specifies the actions that can be requested by a
browser from a webserver. It acts as a gatekeeper between the browser and the
webserver and filters those messages that can or should be handled by the server.
The CGI allows only those programs and methods to be invoked by the browser, 40
which have been defined to the CGI before.

When a program is registered to the CGI, the CGI intercepts all CGI requests and
invokes the predefined method, which is associated with the received HTTP
request for the requested object. For new applications we have no interest in the
accurate CGI specification. We mention them because all other dynamic 45
webserver technologies define interfaces for program calls, which are compliant
to the older CGI specification.

Scripting

Active Server Pages ASP

Java Server Pages JSP

Java Servlets

ABAP

CGI

4 Fehler! Formatvorlage nicht definiert./Develop Web Pages

 of 28 Axel Angeli 12 March 2001
 4

1.3 Active Server pages (ASP and ASP.NET)
Active Server Pages are Microsoft’s implementation of dynamic web pages.

Active Server Pages allow a web developer to insert programming statements into
HTML pages. When the Internet Information Server encounters the programming
statements, it hands them over to a script processor. The IIS comes ready with 50
support for the Microsoft Windows Scripting Host, that understands Visual Basic
Script and Server Side JScript, a Microsoft dialect of the Netscape Javascript
proposal. Microsoft allows to plug in other scripting processors, so theoretically
the script language is arbitrary, unless an appropriate plug-in is found on the
server. When writing this book, the only third- 55

The scripting processor is called via a well-defined DCOM interface by the
Internet Information Server.

The example below uses a simple server side JavaScript script. The code between
<%>..<%> is executed when the file is retrieved and the result of the code
execution is inserted instead. 60

Listing 1: Visual Basic Server ASP SCRIPT example telling you dynamically the web server version
number

<html><body>
Server Side ASP Visual Basic Script

Message:
<% = "Hello from <i>IIS Server</i> version "
+ server.httpdjsVersion) % +"">

End of Message </body></html>

Listing 2: Following pages is sent back to the browser
<html><body>
Server Side ASP Visual Basic Script

Message:
Hello from <i>IIS Server</i> version 2.0

End of Message </body></html>

Listing 3: The browser then displays something similar to here
Server Side ASP Visual Basic Script
Message: Hello from IIS Server Version=2.0
End of Message

1.4 Java Server Pages, JSP
Java Server Pages are special Java classes that return valid HTML code

JSP are the Java corespondents to the Microsoft ASP and the SAP R/3 BSP. If the
web server supports the JSP it calls the Java Virtual Machine (Java Runtime) and
executes the appropriate method, which is expected to return a valid HTML code
string.

1.5 Business Server Pages (BSP)
Business server pages are similar to ASP and JSP, however they support as 65
scripting language ABAP. This is cool for ABAP developers coming out of the
R/3 world,, who want to implement quick code. The bad thing is, that the
Business Server Pages are currently supported by the SAP R/3 Web Application
Server.only.

1.6 Server Components
In object oriented programming the usual term for a program library is 70
component. This is collection of subroutines or functions designed in a way that

Scripting is done via
DCOM

Components are library
functions

Server Pages and Scripting/Fehler! Formatvorlage nicht definiert. 5

 5

they can be called by an external program.

A server component is a piece of software that can be called from an external
source. Practically every program library that is called from a client application is
a server in this sense and indeed most servers are nothing than compiled library 75
routines, which are called by a client. However, for the sake of object oriented
programming you should avoid thinking in terms of libraries. It widens your
horizon, if you think of a server as service provided by a program whose
implementation details are hidden you’re your client program’s eyes and that the
service is solicited by the underlying transaction manager or the operating system 80
respectively.

Using the Microsoft IIS, a component (a “DLL”) can be invoked directly from the
browser by specifying it in the URI.
http.//www.logosworld.com/CGI/testiis.dll?method=”test”&myname=”Goo
fy”

Web server based on Java usually do not allow direct communication between a 85
browser and a component. They can only be called from Servlets, which in turn
can invoke the component.

Figure 1: Browser calls a script, script calls a component method
10 March 2002 R/3 and Internet - (c) 2001 Logos! Informatik GmbH All rights reserved 12

Web server

Programming with Components

RFC Function Modules

R/3 Database

BAPI

Browser

R
FC

ABAP

ABAP
R

FC

Script Processor

Component

H
TTP

Application Programming Interface (API)
(Also known as “Driver”)

(e.g.DCOM Controls, Remote Shell)

R/3 Remote Interface Other Application Interfaces

Application Database Engine

Oracle DB/2 SQL Server

SQ
L

SAP/DB

API

XM
L

DCOM CORBA Enterprise
JavaBeans

SOAP/XML

Application

ASP/Basic JSP/Java JavaScript Python CGI

Components are library
functions

6 Fehler! Formatvorlage nicht definiert./Develop Web Pages

 of 28 Axel Angeli 12 March 2001
 6

1.7 Java Servlets
Java Servlets are programs that expose methods that can be invoked by the web
server on a browser request. They run as demons on the web server and listen to
requests from the web server. Whenever the HTTP server gets a request for the 90
servlet, it invokes a method that corresponds to the type of HTTP request, mostly
the request types are Get or Post.

Java server pages are ordinary Java classes. The only requirement is, that they
have to support a set of special methods:
doGet()doGet
doPost()
doXxx()
 95

These methods are the interface between the webserver and the class, which the
browser requests. These methods actually reflect the gateway function that are
permitted by the CGI specification.

The doGet method is automatically invoked if the calling web server submits an
HTTP Get request for the class. 100

The doPost method is automatically invoked if the calling web server submits an
HTTP Post request for the class.

There may be other interface methods implemented. They are called doXxx where
the Xxx is to be replaced by the appropriate HTTP request. If you want to
implement an interface for the HTTP Delete statement, you would implement a 105
method doDelete, for the HTTP Head command you’d implement doHead.

1.8 Demon
A demon is program that stays permanently in memory and listens to broadcast events.

When an event occurs the demon executes some appropriate action. In an TCP/IP
environment a demon typically listens to the traffic to a single port. A famous
demon is the LPD demon in UNIX, which serves as a printer manager. R/3 people
are familiar with the LPD variation SAPLPD, which does the same as LPD but 110
also understands the R/3 printer language and translates it into operating system
printer API calls. Other names for a demon are: listener, event handler or data
sink.

1.9 EJB - Enterprise Java Beans

1.10 JAVA, COM and ABAP
Hiatus.

Hiatus 115

Servlets must support
methods doGet and
doPost

doGet

doPost

doXxx

Hiatus

Web Pages With Active Server Pages/Fehler! Formatvorlage nicht definiert. 7

 7

2 Web Pages With Active Server Pages
ASP

2.1 ASP Hello World
Active Server Pages, or ASP, add support for Visual Basic to HTML pages. ASP is the
programming model for the Microsoft Internet Information Server IIS. ASP enables
developers to build rich and sophisticated web applications quickly by combining
programming logic (written in the script language of their choice) with HTML pages.

This description is taken from Microsoft development support:

ASP pages are typically used to provide security for a Web site, access databases,
and call business logic encapsulated in COM objects. The ASP engine on the 120
server compiles and runs the script. The browser receives only the resulting
HTML pages that are constructed from the server-side script. ASP script can be
programmed in either Jscript™ or VBScript.

In practice Active Server Pages are HTML pages which are enhanced by inserting
Visual Basic or JavaScript commands. The program statements produce some 125
output which is inserted in place of the program code into the HTML document.

The following program does not need much comment. It responds with a ‘hello
world’ to the calling browser.

You should have a similar script ready in your base directory all the time. It will
allow you to test the IIS, in case you have doubts that it is active. Unfortunately 130
the response from IIS in case of malfunction is pretty uninformative. It will
simply say "Page not found".

Listing 4: Hello World ASP SCRIPT
<html>
<head>
<title>Hello World ASP SCRIPT</title>
</head>
<body>
Server Side ASP Visual Basic Script
<p>
Now there should be a message from the Server
Message:
<%
= "<U>Hello from ASP Server</U>"
%>

The message should be one line above</p>
</body>
</html>

The script is a mixture of HTML and Visual Basic. The text body is a standard 135
HTML document apart from the section between <% and %>. There you will find
the Visual Basic program code. In our example it is a simple response to the
browser. The command is the equal-sign (=) followed by a string.

2.2 Executing VB Script
Visual Basic Script is the inherent language of ASP. The ASP processor actually executes
the Windows Scripting Host which is part of the Windows operating system to process VB
Script statements.

The limits of ASP are the limits of the Scripting Host. This means virtually no
limit at all, as you can call any compiled executable or registered COM object 140
from VBS.

At the core of the example is the Visual Basic FileSystemObject. The

ASP definition by the
Microsoft development
support

ASP are HTML pages
with added VB
statements

Here it is, the first
scriptlet in ASP and
naturally it is called
"HELLO WORLD".

Hello World with an ASP
snippet

VBS can execute any
COM component

FileSystemObject

8 Fehler! Formatvorlage nicht definiert./Develop Web Pages

 of 28 Axel Angeli 12 March 2001
 8

FileSystemObject is a registered Windows library. It combines nearly all methods
and properties which are applicable to files stored on a drive like name, file size,
file date, open a new or existing file, replace the content, rename it and many 145
more.

The example below retrieves a handle for the requested folder. The handle has a
container object which holds all the folders of the sub directory in it. Looping
over the container will give you one file after the other.
<%
Set fs = CreateObject("Scripting.FileSystemObject")
Set subdir = fs.GetFolder(".")
ii = 0
response.write subdir.path
For Each xfile In subdir.Files
ii = ii + 1
response.write "<P>"
response.write ii
response.write ": " + xfile.Name + "</P>"
Next
%>

2.3 Sending HTML Formatting
Active Server Pages replace part of the HTML page with program code, whose output is
inserted in the right places.

When a browser communicates with a server it receives a text stream as a result. 150
When the requested web page contains ASP commands, they will be processed,
interpreted and then stripped by the web server. The browser will see only the
resulting HTML text stream.

An Active Server is, generally speaking, a mixture of static HTML tags, text and
a series of program statements which eventually produce some parts of an 155
HTML page. They are pre-formatted HTML templates, where significant parts are
replaced by program code. When the program code is executed, its output is sent
to the requesting browser.

To demonstrate this we show an ASP sniplet which writes a table to the browser.
For that purpose we have a static table header and a dynamic loop to send five 160
lines of an HTML table.

Listing 5: ASP creating an HTML table
<body>
Server Side ASP
Sending an HTML table
<table border="1"
cellpadding="0" cellspacing="0"
width="100%">
<%
response.write "<TR><TD>A table line</TD></TR>"
response.write "<TR><TD>A table line</TD></TR>"
response.write "<TR><TD>A table line</TD></TR>"
response.write "<TR><TD>A table line</TD></TR>"
response.write "<TR><TD>A table line</TD></TR>"
%>
</table>
</body>

2.4 Capturing Commandline Parameters
Like any other proficient programming language, an ASP can be called along with the
specification of parameters. These are called Querystring in Microsoft terminology. There are
two versions: POST will read the values from an HTML form while GET will read the values
from the URL.

This script displays the
names of the files found,
one per row.

ASP are HTML templates
with inserted program
statements.

Web Pages With Active Server Pages/Fehler! Formatvorlage nicht definiert. 9

 9

When you specify an URL in the browser you can pass a parameter string right
along. This string can then be evaluated by the ASP program to control the
program flow.
http://localhost/querystring.asp?Name="Micky"&City="Duckburg"
The querystring is specified immediately after the URL and separated from it by a 165
question mark. There are no spaces allowed between the URL and the querystring
because the browser does not allow spaces. A browser actually sees the URL plus
the querystring as a single URL. Multiple Querystrings are joined by an
ampersand “&”.

The ASP parser is intelligent enough to interpret the querystring, so you do not 170
have to do the tedious job of splitting the string into its elements. The ASP
Request.QueryString method treats the querystring according to the Visual Basic
syntax. This allows positional and named parameters.
<HTML><BODY>
<H3>Here are the parameters which have been passed.</H3>
<P>
<% = "Querystring="+Request.QueryString %></P>
<P><% = "Input field Name is="+Request.QueryString("NAME") %></P>
<P><% = "Input field City is="+Request.QueryString("CITY") %></P>
</BODY></HTML>

An HTML form element allows us to use two completely different methods to 175
transfer the data to the web server. The GET method takes the form of input fields
and values and appends them to the end of the submitted URL in the CGI
convention as already shown above.
<HTML><BODY>
<%
response.write("<H3>Form Content</H3>")
for each formfield in Request.Form
response.write(formfield&"="&Request.Form(formfield)&" ")
next
%>
</BODY></HTML>

Figure 2: HTML page produced by above FORM element

<FORM METHOD="GET" ACTION="querystring.asp">
 <H1>Sending form data as query string to an
ASP</H1>
 <P>Name: <INPUT TYPE="TEXT" NAME="NAME"></P>
 <P>City: <INPUT TYPE="TEXT" NAME="CITY"></P>
 <P><INPUT TYPE="SUBMIT" NAME="Submit" VALUE="Submit"></P>
</FORM>

http.//querystring.asp?NAME=”Micky”&CITY=”Duckburg”
 180

A querystring is the
additional text string
specified with the URL in
the browser request line
A querystring can look
like this Querystring must follow
the URL separated by a
question mark “?”

Multiple querystrings are
joined by an ampersand
“&”

ASP Page to display the
querystring parameters if
specified

An HTML FORM can
post data in the request
body or send them along
with the URL

ASP Page to display the
form values with the
request.Form method

Submitting a FORM with
METHOD=GET does
generate a querystring
with the form data

Generated URL when
the FORM is submitted
with method GET

10 Fehler! Formatvorlage nicht definiert./Develop Web Pages

 of 28 Axel Angeli 12 March 2001
 10

<HTML><BODY>
<H3>Here are the parameters which have been passed.</H3>
<P>
<% = "Querystring="+Request.QueryString %></P>
<P><% = "Input field Name is="+Request.QueryString("NAME") %></P>
<P><% = "Input field City is="+Request.QueryString("CITY") %></P>
<P>You can address the parameters with a numeric position index as
well</P>
<P>
<% if Request.QueryString <> "" then _
resstr = "FirstParam is="+Request.QueryString(1)" %>
<% response.write resstr %>
</P>
</BODY></HTML>

You may have decided that it is not desirable to send the form values visible as
part of the URL string. In that case you can use the POST method and the data
will be embedded in the body part of the request. The data is then stored with the
request object and can be accessed with the request.Form method. 185
<FORM METHOD="POST" ACTION="querystring.asp">
 <H1>Sending form data as query string to an
ASP</H1>
 <P>Name: <INPUT TYPE="TEXT" NAME="NAME"></P>
 <P>City: <INPUT TYPE="TEXT" NAME="CITY"></P>
 <P><INPUT TYPE="SUBMIT" NAME="Submit" VALUE="Submit"></P>
</FORM>

<HTML><BODY>
<%
response.write("<H3>Form Content</H3>")
for each formfield in Request.Form
response.write(formfield&"="&Request.Form(formfield)&" ")
next
%>
</BODY></HTML>

2.5 Global.asa – The ASP Autoexec File
When an application or a session is called for the first time, the IIS automatically executes a
specifically named event handler. These event handlers must be stored in a file named
global.asa and in the root of the specific subweb.
Figure 3: A typical GLOBAL.ASA contains implementations for the following events

<script language=vbscript runat=server>
SUB Application_OnStart
END SUB

SUB Application_OnEnd
END SUB

SUB Session_OnStart
END SUB

Sub Session_OnEnd
END SUB
</script>

When the IIS detects that one of its hosted applications is requested for the first
time it signals the event Application_OnStart. If this event is fired, the IIS
looks for a file named global.asa in the root of the current subweb. If the 190
global.asa contains a handler routine with the same name
(Sub Application_OnStart()) it will execute it. Accordingly there are
other events, whose corresponding procedure names are
Application_OnStart, Application_OnEnd, Session_OnStart, or
Session_OnEnd. 195

ASP Page to display the
querystring parameters if
specified with the
request.Querystring
method

POST sends form input
hidden with the request

Submitting a FORM with
METHOD=POST does
generate a querystring
with the form data

ASP Page to display the
form values with the
request.Form method

When an application is
requested for the first
time the IIS executes
Application_OnStart() in
global.asa

Web Pages With Active Server Pages/Fehler! Formatvorlage nicht definiert. 11

 11

You can have multiple global.asa files on your site. IIS searches for the
global.asa in the root of the current subweb only. Subwebs are marked
specially if you edit them with FrontPage. Outside of FrontPage you can tell the
root of a subweb from the presence of a system folder with the name _vti_pvt .
This subdirectory is a system file and may be hidden, so be sure to display hidden 200
files if you look for it with Explorer.

If the global.asa file contains an error the first user to call a page from the
respective subweb will receive an error message. E.g. it may look like the
following, where we tried to execute a standard .asp script, which is not allowed
(code must be enclosed in <SCRIPT>… </SCRIPT> tags instead). 205

Figure 4: Sample error message when global.asa contains an error, in this case invalid ASP script
tags have been found

Script blocks must be one of the allowed Global.asa procedures. Script directives
within <% ... %> are not allowed within the global.asa file. The procedure
names allowed are Application_OnStart, Application_OnEnd,
Session_OnStart, or Session_OnEnd.

Because you usually do not want a user to get a system error message it is wise to 210
add an ON ERROR GOTO statement to the script in global.asa which
provides proper error handling. The most simple but also worst handler would be
ON ERROR RESUME .

If you added or changed an Application_OnStart or
Application_OnEnd routine in the global.asa file, they will only be executed 215
after the web server has been reset or restarted. Resetting the web server is done
by stopping and restarting it. You can restart the IIS from the administration
menu. In NT 5 and Windows 2000 you can access the administration menu from
the system control panel from where you select Internet Service Manager to start
the IIS administration manager and there you have a menu option to restart the 220
IIS.

IIS looks for global.asa in
the root of the current
subweb

If global.asa contains an
error the first user to call
the application receives
the error message

If you changed
global.asa you must stop
and restart the web
server

12 Fehler! Formatvorlage nicht definiert./Develop Web Pages

 of 28 Axel Angeli 12 March 2001
 12

Table 1: You can restart IIS from IIS Internet service manager which is found in the NT control panel

2.6 ASP Application Variables
Using a globally stored application variable

This example implements a counter which is incremented every time the page is
viewed. You can see that the variable is stored globally from the fact that its value 225
is actually incremented by every user and window you call. A session variable
would reset the counter to its initial value every time a new session, i.e. a new
browser window is opened.

Counter application

Web Pages With Active Server Pages/Fehler! Formatvorlage nicht definiert. 13

 13

Listing 6: Sample code to set a global application variable
<body>
<H3>Here is the value of the counter.</H3>
<P>
<% Application.Lock %>
<% Counter = Application("AccessCounter") %>
<% Counter = Counter + 1 %>
<% Application("AccessCounter") = Counter %>
<% Application.Unlock %>
<% = "<P>The value of the counter is " %>
<% = Counter %>
<% = "</P>" %>
<% = "<P>Connection String" %>
<% = Application("ConnectionString") %>
<% = "</P>" %>
<% %>
<% Application.UnLock %>
</P></body>
</html>

In order to test the effect you should open this ASP page in two browser windows.
Every time you press the refresh button of the browser the counter will be 230
implemented by one (1).

Figure 5: Sample output of counter application in browser

2.7 Example: Display Server File List With ASP
This example will show the names of the files found in a directory of the server. It is a basic
ASP examples which displays information found on the ASP server to the requesting
browser.

At the core of the example is the Visual basic FileSystemObject. The
FileSystemObject is a registered Windows library. It combines nearly all methods 235
and properties which are applicable to files stored on a drive like name, file size,
file date, open a new or existing file, replace the content, rename it and many
more.

The example below retrieves a handle for the requested folder. The handle has a
container object which holds all the folders of the sub directory in it. Looping 240
over the container will give you one file after the other.

Open application in two
browser windows to test
it

14 Fehler! Formatvorlage nicht definiert./Develop Web Pages

 of 28 Axel Angeli 12 March 2001
 14

Figure 6: Listing files of directory on the ASP server

Listing 7: The script displays the names of the found directories
<%
Set fs = CreateObject("Scripting.FileSystemObject")
Set subdir = fs.GetFolder(".")
ii = 0
response.write subdir.path
For Each xfile In subdir.Files
ii = ii + 1
response.write "<P>"
response.write ii
response.write ": " + xfile.Name + "</P>"
Next
%>

Web Pages With Java Server Pages and Servlets/Fehler! Formatvorlage nicht definiert. 15

 15

3 Web Pages With Java Server Pages and Servlets
Choosing the right programming language is one of the crucial decisions for the projects
success. The purpose of the programming language is to create the links between the
already existing elements of your infrastructure. The programming language must be able to
provide code that is supported by the web server, it must be able to connect to R/3 and any
other data source needed for your application. But the language must also provide self-
documenting, easy-to-read and easy-to-debug code. Some suitable languages are: Java,
Visual Basic or Delphi.

3.1 Java
Java is a C++ like programming language, developed especially to create distributed
applications via a TCP/IP network.

Java is known as one of the classics object oriented programming. It has been
developed by the computer giant SUN® Microsystems. Other than C++, Java is
copyrighted, so that SUN® Microsystems retains the full control over the 245
evolution of the language and its dialects and subsets and over the implementation
of any run-time engines. Practically this means, that there is only one Java
language. However, this is also true for other proprietary languages like Borland
Delphi™ and Microsoft Visual Basic™.

The Java language according to the SUN specification is a pseudo-compiler 250
language. Code written in Java must be compiled into a transportable meta-code
which is eventually interpreted by the Java run-time engine. The Java run-time
engine is usually called the Java Virtual Machine.(JVM).

Before we show a small Hello World example, let as speak about Java Applets.
Java is mostly encountered in the form of some fancy, usually graphical gimmicks 255
on some web sites. This is Java compiled code, which is executed on the
presentation server by a web browser that supports the Java Virtual Machine. But
Java is much more: it is a full featured programming language, that can be used
everywhere in distributed object oriented programming.

Other than in Visual Basic or many other programming languages, Java is 260
designed in a way, that a public class is always stored in a single file. Therefore
we create a file called HelloWorldClass.java that contains the code for the class
HelloWorldClass . To make the class executable, i.e. make it a main thread, it
requires a default method with the name main .

 265

Figure 7: Java class HelloWorld
public class HelloWorldClass {
 public static void main(String[] args) {
 System.out.println("Welcome to Java hello World");
 }
}

This example prints the string in parentheses when the method main is invoked.
The term “to invoke” is commonly used for calling a method. To gve you an
understanding, here are some comments on the syntax.
public class HelloWorldClass { some code }
The keyword class begins a new class and the code of the class is embraced in
curly brackets. 270

The keyword public tells the compiler, that the following object shall be visible
for external objects.
public static void main(String[] args) {
Our class defines one single method with the name main. A method with the name

Java is a semi compiled
language

Java Applets and Java
Servlets

Java HelloWorld

16 Fehler! Formatvorlage nicht definiert./Develop Web Pages

 of 28 Axel Angeli 12 March 2001
 16

main is recognised as the default method. This method is called when the JVM
instantiated the class and the caller did not specify a different default method. 275

The keyword void tells us that the method will not return any result to the caller.
In Visual Basic or Delphi terms, a method with the keyword void is a procedure
otherwise it is a function.

 After the method name there you find a list of arguments in parentheses. In the
example there is only one argument with the name args defined. The cryptic 280
String[] tells us that the parameters are an array of strings. String defines the
argument as a string type and the square brackets [] defines an Array of String.
Because arrays have a dynamic length in Java, this allows the specification of an
arbitrary number of arguments. The number of arguments can be questioned with
length property of the array (args.length). 285

Before the class can be instantiated it needs to be compiled using the Java
compiler javac.

Figure 8: Compiling the HelloWorldClass with the java command line utility
java –verbose HelloWorldClass
[parsing started HelloWorldClass.java]
[parsing completed 130ms]
[loading F:\jbuilder5\jdk1.3\jre\lib\rt.jar(java/lang/Object.class)]
[loading F:\jbuilder5\jdk1.3\jre\lib\rt.jar(java/lang/String.class)]
[checking HelloWorldClass]
[loading F:\jbuilder5\jdk1.3\jre\lib\rt.jar(java/lang/System.class)]
[loading F:\jbuilder5\jdk1.3\jre\lib\rt.jar(java/io/PrintStream.class)]
[loading F:\jbuilder5\jdk1.3\jre\lib\rt.jar(java/io/FilterOutputStream.class)]
[loading F:\jbuilder5\jdk1.3\jre\lib\rt.jar(java/io/OutputStream.class)]
[wrote HelloWorldClass.class]
[total 561ms]

Figure 9: Files created by the Java compiler
07.10.2001 19:33 451 HelloWorldClass.class
07.10.2001 19:31 302 HelloWorldClass.java
 2 File(s) 753 Bytes

When the class is created it can be tested with the Java run-time utility. This
utility 290

• creates an instance of the class and
• executes the method main

Figure 10: Executing the class with the Java Run-time
D:\JDK> java HelloWorldClass

Welcome to Java hello World

3.2 Java Utilities
The Java Software Development Kit JDK can be downloaded free of charge from the SUN
web sites. Nearly all Java packages are nothing than development environments, which
actually use the JDK utilities to generate and execute the code.
javac

The javac utility is the java compiler. It takes a Java class or Java package (a
collection of classes bound together in a single file) and compiles it into classes. 295
The input file for the javac utility would usually have the extension .java and
generates and output with the extension .class.

Web Pages With Java Server Pages and Servlets/Fehler! Formatvorlage nicht definiert. 17

 17

Example:
java HelloWorldClass.java
compiles into
java HelloWorldClass.class

Figure 11: Call options of the javac utility
Usage: javac <options> <source files>
where possible options include:
 -g Generate all debugging info
 -g:none Generate no debugging info
 -g:{lines,vars,source} Generate only some debugging info
 -O Optimize; may hinder debugging or enlarge class file

 -nowarn Generate no warnings
 -verbose Output messages about what the compiler is doing
 -deprecation Output source locations where deprecated APIs are used
 -classpath <path> Specify where to find user class files
 -sourcepath <path> Specify where to find input source files
 -bootclasspath <path> Override location of bootstrap class files
 -extdirs <dirs> Override location of installed extensions
 -d <directory> Specify where to place generated class files
 -encoding <encoding> Specify character encoding used by source files
 -target <release> Generate class files for specific VM version

java
The java utility is an implementation of the Java Virtual Machine. It creates an
instance of a class and executes the main method of the class. 300

Figure 12: Executing the class with the Java Run-time
D:\JDK> java HelloWorldClass

Welcome to Java hello World

Figure 13: Call options of the java utility
Usage: java [-options] class [args...]
 (to execute a class)
 or java -jar [-options] jarfile [args...]
 (to execute a jar file)

where options include:
 -cp -classpath <directories and zip/jar files separated by ;>
 set search path for application classes and resources
 -D<name>=<value>
 set a system property
 -verbose[:class|gc|jni]
 enable verbose output
 -version print product version and exit
 -showversion print product version and continue
 -? -help print this help message
 -X print help on non-standard options

javap
The javap utility analyses compiled java classes and returns many helpful
information.

Figure 14: Executing the javap analyser on the Hello World Class
D:\JDK> javap HelloWorldClass

Compiled from HelloWorldClass.java
public class HelloWorldClass extends java.lang.Object { 305

 public HelloWorldClass();

18 Fehler! Formatvorlage nicht definiert./Develop Web Pages

 of 28 Axel Angeli 12 March 2001
 18

 public static void main(java.lang.String[]);
}

Figure 15: Call options of the javap utility
Usage: javap <options> <classes>...

where options include:
 -b Backward compatibility with javap in JDK 1.1
 -c Disassemble the code
 -classpath <pathlist> Specify where to find user class files
 -extdirs <dirs> Override location of installed extensions
 -help Print this usage message
 -J<flag> Pass <flag> directly to the runtime system
 -l Print line number and local variable tables
 -public Show only public classes and members
 -protected Show protected/public classes and members
 -package Show package/protected/public classes and members
 -private Show all classes and members
 -s Print internal type signatures
 -bootclasspath <pathlist> Override location of class files loaded
 by the bootstrap class loader
 -verbose Print stack size,number of locals and args for methods
 If verifying, print reasons for failure

3.3 Java
Java is a C++ like programming language, developed especially to create distributed
applications via a TCP/IP network.

Java is know as one of the classics object oriented programming. It has been
developed by the computer giant SUN® Microsystems. Other than C++, Java is
copyrighted, so that SUN® Microsystems retains the full control over the 310
evolution of the language and its dialects and subsets and over the implementation
of any run-time engines. Practically this means, that there is only one Java
language. However, this is also true for other proprietary languages like Borland
Delphi™ and Microsoft Visual Basic™.

The Java language according to the SUN specification is a pseudo-compiler 315
language. Code written in Java must be compiled into a transportable meta-code
which is eventually interpreted by the Java run-time engine. The Java run-time
engine is usually called the Java Virtual Machine.(JVM).

Before we show a small Hello World example, let as speak about Java Applets.
Java is mostly encountered in the form of some fancy, usually graphical gimmicks 320
on some web sites. This is Java compiled code, which is executed on the
presentation server by a web browser that supports the Java Virtual Machine. But
Java is much more: it is a full featured programming language, that can be used
everywhere in distributed object oriented programming.

Other than in Visual Basic or many other programming languages, Java is 325
designed in a way, that a public class is always stored in a single file. Therefore
we create a file called HelloWorldClass.java that contains the code for the
class HelloWorldClass . To make the class executable, i.e. make it a main
thread, it requires a default method with the name main .

 330

Java is a semi compiled
language

Java is a semi compiled
language

Java HelloWorld

Web Pages With Java Server Pages and Servlets/Fehler! Formatvorlage nicht definiert. 19

 19

Figure 16: Java class HelloWorld
public class HelloWorldClass {
 public static void main(String[] args) {
 System.out.println("Welcome to Java hello World");
 }
}

This example prints the string in parentheses when the method main is invoked.
The term “to invoke” is commonly used for calling a method. To gve you an
understanding, here are some comments on the syntax.
public class HelloWorldClass { some code }
The keyword class begins a new class and the code of the class is embraced in
curly brackets. 335

The keyword public tells the compiler, that the following object shall be visible
for external objects.
public static void main(String[] args) {
Our class defines one single method with the name main. A method with the name
main is recognised as the default method. This method is called when the JVM
instantiated the class and the caller did not specify a different default method. 340

The keyword void tells us that the method will not return any result to the caller.
In Visual Basic or Delphi terms, a method with the keyword void is a procedure
otherwise it is a function.

 After the method name there you find a list of arguments in parentheses. In the
example there is only one argument with the name args defined. The cryptic 345
String[] tells us that the parameters are an array of strings. String defines the
argument as a string type and the square brackets [] defines an Array of String.
Because arrays have a dynamic length in Java, this allows the specification of an
arbitrary number of arguments. The number of arguments can be questioned with
length property of the array (args.length). 350

Before the class can be instantiated it needs to be compiled using the Java
compiler javac.

Figure 17: Compiling the HelloWorldClass with the java command line utility
java –verbose HelloWorldClass
[parsing started HelloWorldClass.java]
[parsing completed 130ms]
[loading F:\jbuilder5\jdk1.3\jre\lib\rt.jar(java/lang/Object.class)]
[loading F:\jbuilder5\jdk1.3\jre\lib\rt.jar(java/lang/String.class)]
[checking HelloWorldClass]
[loading F:\jbuilder5\jdk1.3\jre\lib\rt.jar(java/lang/System.class)]
[loading F:\jbuilder5\jdk1.3\jre\lib\rt.jar(java/io/PrintStream.class)]
[loading F:\jbuilder5\jdk1.3\jre\lib\rt.jar(java/io/FilterOutputStream.class)]
[loading F:\jbuilder5\jdk1.3\jre\lib\rt.jar(java/io/OutputStream.class)]
[wrote HelloWorldClass.class]
[total 561ms]

Figure 18: Files created by the Java compiler

07.10.2001 19:33 451 HelloWorldClass.class

07.10.2001 19:31 302 HelloWorldClass.java

 2 File(s) 753 Bytes 355

When the class is created it can be tested with the Java run-time utility. This
utility

• creates an instance of the class and

20 Fehler! Formatvorlage nicht definiert./Develop Web Pages

 of 28 Axel Angeli 12 March 2001
 20

• executes the method main 360

Figure 19: Executing the class with the Java Run-time
java HelloWorldClass

Welcome to Java hello World

3.4 Java Utilities
The Java Software Development Kit JDK can be downloaded free of charge from the SUN
web sites. Nearly all Java packages are nothing than development environments, which
actually use the JDK utilities to generate and execute the code.
javac

The javac utility is the java compiler. It takes a Java class or Java package (a
collection of classes bound together in a single file) and compiles it into classes.
The input file for the javac utility would usually have the extension .java and
generates and output with the extension .class. 365

Example:
java HelloWorldClass.java
compiles into
java HelloWorldClass.class

Figure 20: Call options of the javac utility
Usage: javac <options> <source files>
where possible options include:
 -g Generate all debugging info
 -g:none Generate no debugging info
 -g:{lines,vars,source} Generate only some debugging info
 -O Optimize; may hinder debugging or enlarge class file

 -nowarn Generate no warnings
 -verbose Output messages about what the compiler is doing
 -deprecation Output source locations where deprecated APIs are used
 -classpath <path> Specify where to find user class files
 -sourcepath <path> Specify where to find input source files
 -bootclasspath <path> Override location of bootstrap class files
 -extdirs <dirs> Override location of installed extensions
 -d <directory> Specify where to place generated class files
 -encoding <encoding> Specify character encoding used by source files
 -target <release> Generate class files for specific VM version

java
The java utility is an implementation of the Java Virtual Machine. It creates an
instance of a class and executes the main method of the class.

Figure 21: Executing the class with the Java Run-time
java HelloWorldClass

Welcome to Java hello World
 370

Web Pages With Java Server Pages and Servlets/Fehler! Formatvorlage nicht definiert. 21

 21

Figure 22: Call options of the java utility
Usage: java [-options] class [args...]
 (to execute a class)
 or java -jar [-options] jarfile [args...]
 (to execute a jar file)

where options include:
 -cp -classpath <directories and zip/jar files separated by ;>
 set search path for application classes and resources
 -D<name>=<value>
 set a system property
 -verbose[:class|gc|jni]
 enable verbose output
 -version print product version and exit
 -showversion print product version and continue
 -? -help print this help message
 -X print help on non-standard options

javapp
The javap utility analyses compiled java classes and returns many helpful
information.

Figure 23: Executing the javap analyser on the Hello World Class
javap HelloWorldClass

Compiled from HelloWorldClass.java
public class HelloWorldClass extends java.lang.Object {
 public HelloWorldClass(); 375

 public static void main(java.lang.String[]);
}

Figure 24: Call options of the javap utility
Usage: javap <options> <classes>...

where options include:
 -b Backward compatibility with javap in JDK 1.1
 -c Disassemble the code
 -classpath <pathlist> Specify where to find user class files
 -extdirs <dirs> Override location of installed extensions
 -help Print this usage message
 -J<flag> Pass <flag> directly to the runtime system
 -l Print line number and local variable tables
 -public Show only public classes and members
 -protected Show protected/public classes and members
 -package Show package/protected/public classes and members
 -private Show all classes and members
 -s Print internal type signatures
 -bootclasspath <pathlist> Override location of class files loaded
 by the bootstrap class loader
 -verbose Print stack size,number of locals and args for methods
 If verifying, print reasons for failure

22 Fehler! Formatvorlage nicht definiert./Develop Web Pages

 of 28 Axel Angeli 12 March 2001
 22

4 Web Pages With XSL Stylesheets and XML
XSL – the eXtended Stylesheet Language – had been originally designed to define templates
and layouts to display data of a specific XML file. XSL is in fact a template-based
programming language whose programs are completely implemented in XML with the
purpose to receive XML documents as input and transform them into a target document, e.g.
in HTML or PDF.

 380

4.1 XSL Is Simple
I have seen dozens of books on XML and XSL on the market, propably there are a
several hundred out there. They all have in common that their authors have a
splendid knowledge on how to use XML and exploit their tremendous and most
fancy capabilities. However the enormous possibilities behind XML makes them
blinded for the simplicity of XML and the main purpose of XSL: the 385
transformation of a well-formed XML document into an HTML output. I
therefore want to start with a tutorial, that does not show the capabilities of XSL
but asks, how to transform a database output from XML into a good-looking
HTML document.

4.2 Our Goal: An Inventory Table of Animals
Let us assume that we are responsible for a little animal farm and want to create a 390
little grid table with the names and some data of the animals in our farm. Here is
the output that I imagine.

Figure 25: Listing of animals in our little farm

Name Family Gender Weight

Elsa Cow female 420

Rosa Pig male 120

Lisa Chicken male 3

The HTML that generated the table listing would look similar to the following. 395

Figure 26: Corresponding HTML of above
<html>
<body>
<table border="1">
<tr><th>Name</th><th>Family</th><th>Gender</th><th>Weight</th></tr>

<tr><td>Elsa</td><td>Cow</td><td>female</td><td>420</td></tr>
<tr><td>Rosa</td><td>Pig</td><td>male</td><td>120</td></tr>
<tr><td>Lisa</td><td>Chicken</td><td>male</td><td>3</td></tr>

</table>
</body>
</html>

As you see, there are basically two blocks:

A static block comprising the HTML wrapper with the <HTML> and <BODY>
tags, the table frame with the <TABLE> tag and the table’s headline.

Web Pages With XSL Stylesheets and XML/Fehler! Formatvorlage nicht definiert. 23

 23

A series of lines with the animal data with the same structure for every animal in 400
the farm.

4.3 Building The XML Farm
Before we put animals in our farm, we create an empty farm, i.e. a minimal XML
document that builds the envelope for our farm data:

Figure 27: The empty XML farm
<?xml version="1.0" encoding="UTF-8"?>
<Farm>
</Farm>

The first line embraced in the <?..?> tags represents a directive to the parser. The 405
purpose of the directives are to tell the parser how the XML data shall be treated.
The shown directive tells some information about the version of XML used and
what ASCII character encoding is in use.

The <Farm> … </Farm> pair is the top envelope also known as root element of
the XML. Every well-formed XML file must have one and only one root element. 410

Now we are gong to populate the farm with some animal. Every animal gets a
name assigned as an attribute and a number of sub node elements telling us
something about the animal.

Figure 28: The XML farm populated with an animal
<?xml version="1.0" encoding="UTF-8"?>
<?xml-stylesheet type="text/xsl" href="U:\examples\XML\Farm.xsl"?>
<Farm>
 <Animal name=”Elsa”>
 <Family>Cow</Family>
 <Weight>420</Weight>
 <Gender>F</Gender>
 </Animal>
</Farm>

We already attached the reference to an (existing) style sheet file, which will be
used to format the presentation of the XML data. 415

The final farm then looks as follows.

Figure 29: The XML farm populated with animals and its anatomy
<?xml version="1.0" encoding="UTF-8"?>
<?xml-stylesheet type="text/xsl" href="U:\examples\XML\Farm.xsl"?>

Reference to an existing XSL stylesheet “Farm.xsl”

<Farm>
 <Animal name=”Elsa”>

One <Animal> tag for every animal

 <Family>Cow</Family>
 <Weight>420</Weight>
 <Gender>F</Gender>

One tag for each characteristic of the animal

24 Fehler! Formatvorlage nicht definiert./Develop Web Pages

 of 28 Axel Angeli 12 March 2001
 24

 </Animal>
 <Animal name=”Rosa”>
 <Family>Pig</Family>
 <Weight>120</Weight>
 <Gender>M</Gender>
 </Animal>
 <Animal name=”Lisa”>
 <Family>Chicken</Family>
 <Weight>3</Weight>
 <Gender>M</Gender>
 </Animal>
</Farm>

4.4 XSL – Step-by-step
A basic stylesheet is formed by a root element called <xsl:stylesheet>. In between 420
there are the XSL stylesheet directives in XML notation.

Figure 30: A minimum XSL stylesheet
<?xml version="1.0" encoding="UTF-8"?>
<xsl:stylesheet>
</xsl:stylesheet>

This stylesheet does actually nothing to the XML output. If applied, it will pass-
through the input XML data. For a proper stylesheet use you need first to add a
reference to a namespace. An XSL namespace is a definition file that tells the
rules and ranges of valid XML tags of the current XSL stylesheet. Here is an 425
elementary XSL stylesheet with a reference to a namespace.

Figure 31: An elementary XSL stylesheet
<?xml version="1.0" encoding="UTF-8"?>
<xsl:stylesheet xmlns:xsl="http://www.w3.org/TR/WD-xsl">
</xsl:stylesheet>

The used reference xmlns:xsl=http://www.w3.org/TR/WD-xsl is actually a
dummy reference. This means that the specified URL is not really looked up in
the internet, but that the parser would know the content of the referenced file
already. There exists a variety of such dummy references. However, if the 430
specified namespace URL is not among the default ones, it must exist and the
parser must be able to open it, otherwise the parse will fail.

4.5 XSL Templates
The templates are the core of XSL formatting. A template defines a number of
XSL definitions in its body which are applied to every matching XML tag. The
parser actually processes the full XML file and replaces the found tag with the 435
template. The match-attribute restricts the application of the template to the XML
tags that match the specified pattern. Specifying match=”/” catches the root
element of the XML input file.

Figure 32: An elementary XSL stylesheet
<?xml version="1.0" encoding="UTF-8"?>
<xsl:stylesheet xmlns:xsl="http://www.w3.org/TR/WD-xsl">
 <xsl:template match="/">
 Hiding the root
 </xsl:template>
</xsl:stylesheet>

The result of the stylesheet applied to any arbitrary XML file would always be the
following one-liner: 440

Web Pages With XSL Stylesheets and XML/Fehler! Formatvorlage nicht definiert. 25

 25

 Hiding the root

4.6 XSL Applied To the Farm
We now feel ready to apply our template to the farm XML data. The example
XSL defines a single template (xsl:template) applied to the root (match="/"). The
template creates the body of an HTML document and then loops over every 445
animal in the XML file (<xsl:for-each select="Farm/Animal">) to produce a row
of an HTML table element (<tr><td>Cow</td></tr>).

Figure 33: A matching XSL stylesheet
<?xml version="1.0" encoding="UTF-8"?>
<xsl:stylesheet xmlns:xsl="http://www.w3.org/TR/WD-xsl">
 <xsl:template match="/">
 <html>
 <head/>
 <body>
 <table border="1">
 <tr>
 <th>Name</th>
 <th>Family</th>
 <th>Gender</th>
 <th>Weight</th>
 </tr>
 <xsl:for-each select="Farm/Animal">
 <tr>
 <td>
 <xsl:value-of select="@Name"/>
 </td>
 <td>
 <xsl:value-of select="Family"/>
 </td>
 <td>
 <xsl:choose>
 <xsl:when
test=".[Gender='M']">male</xsl:when>
 <xsl:when
test=".[Gender='F']">female</xsl:when>

 <xsl:otherwise>unknown</xsl:otherwise>
 </xsl:choose>
 </td>
 <td>
 <xsl:value-of select="Weight"/>
 </td>
 </tr>
 </xsl:for-each>
 </table>
 </body>
 </html>
 </xsl:template>
</xsl:stylesheet>

The anatomy of the stylesheet.
Figure 34: Anatomy of the XSL stylesheet
<?xml version="1.0" encoding="UTF-8"?>

Reference to standard name space

26 Fehler! Formatvorlage nicht definiert./Develop Web Pages

 of 28 Axel Angeli 12 March 2001
 26

<xsl:stylesheet xmlns:xsl="http://www.w3.org/TR/WD-xsl">
match=”/” means: start with the top root, i.e. this style sheets applies to all elements of
the input XML data set
 <xsl:template match="/">
 <html>
 <head/>
 <body>
 <table border="1">
 <tr>
 <th>Name</th>
 <th>Family</th>
 <th>Gender</th>
 <th>Weight</th>
 </tr>

Up to here is the static block with the HTML and TABLE frame

Now we start a loop that processes all tags with the name “<Animal>” that are embedded in turn in a tag “<Farm>” 450

 <xsl:for-each select="Farm/Animal">
 <tr>
 <td>

Write the value of the attribute “Name” assigned to the <Animal> element. Attributes are always referenced to by prefixing it with
the at-sign (@).

 <xsl:value-of select="@Name"/>
 </td>
 <td>

Write the value of the element which is tagged as <Family> within an <Animal> element

 <xsl:value-of select="Family"/>
 </td>
 <td>

To make it a bit more interesting we add a “Choose” statement, which tests the value of the tag “<Gender>” against several constants
and thus translates “M” into “male”, “F” into “female” etc. 455

 <xsl:choose>
If the element tagged as “<Gender>” within the current element (referred to with the dot “.”) is equal to “M”, then and only then write
the text “male”

 <xsl:when
test=".[Gender='M']">male</xsl:when>

Same for <Gender> = “F”

 <xsl:when
test=".[Gender='F']">female</xsl:when>

The otherwise section catches all cases with no explicit match

 <xsl:otherwise>unknown</xsl:otherwise>
 </xsl:choose>
 </td>
 <td>
 <xsl:value-of select="Weight"/>
 </td>
 </tr>
 </xsl:for-each>
 </table>
 </body>
 </html>
 </xsl:template>
</xsl:stylesheet>

Web Pages With XSL Stylesheets and XML/Fehler! Formatvorlage nicht definiert. 27

 27

Figure 35: Synoptic view of stylesheet and its transformation output
<?xml version="1.0" encoding="UTF-8"?>
<xsl:stylesheet xmlns:xsl="http://www.w3.org/TR/W D-xsl">
<xsl:template match="/">
<html>
 <head/>
 <body>
 <table border="1">
 <tr>
 <th>Name</th>
 <th>Family</th>
 <th>Gender</th>
 <th>Weight</th>
 </tr> Name Family Gender Weight
 <xsl:for-each select="Farm/Animal"> Elsa Cow female 420
 <tr> Rosa Pig male 120
 <td> Lisa Chicken male 3
 <xsl:value-of select="Name"/>
 </td>
 <td>
 <xsl:value-of select="Family"/>
 </td>
 <td>
 <xsl:choose> <Animal>
 <xsl:when test=".[Gender='M']">male</xsl:when> <Name>Elsa</Name>
 <xsl:when test=".[Gender='F']">female</xsl:when> <Family>Cow</Family>
 <xsl:otherwise>unknown</xsl:otherwise> <W eight>420</W eight>
 </xsl:choose> <Gender>F</Gender>
 </td> </Animal>
 <td> In every loop one of the <Animal> elements is focused
 <xsl:value-of select="W eight"/>
 </td>
 </tr>
 </xsl:for-each>
 </table>
 </body>
 </html>
</xsl:template>
</xsl:stylesheet>

Parsing and Translating The XML
The transformation of the XML into HTML by means of the stylesheet requires a 460
parser. There are many parsers available, most of them written in Java. On
Microsoft platforms we can use the MSXML.DLL and use the
transformNodeToObject or transformNode method of the XMLDOM object. Here
are two versions of calling the transformation.

 465

Figure 36: VBA program that transforms the XML data using the style sheet using msxml.dll
Dim xmlDoc As MSXML2.DOMDocument
Dim xslDoc As MSXML2.DOMDocument

Sub Main()
 Set xmlDoc = New MSXML2.DOMDocument
 Set xslDoc = New MSXML2.DOMDocument

 xmlDoc.Load ("U:\examples\XML\Farm.xml")
 xslDoc.Load ("U:\examples\XML\Farm.xsl")
 Debug.Print xmlDoc.transformNode(xslDoc)
End Sub

28 Fehler! Formatvorlage nicht definiert./Develop Web Pages

 of 28 Axel Angeli 12 March 2001
 28

Figure 37: Active Server Page that transforms the XML data using the style sheet using msxml.dll
<%
Dim xmlDoc As MSXML2.DOMDocument
Dim xslDoc As MSXML2.DOMDocument
Set xmlDoc = CreateObject("Microsoft.XMLDOM")
Set xslDoc = CreateObject("Microsoft.XMLDOM")

xmlDoc.Load ("U:\examples\XML\Farm.xml")
xslDoc.Load ("U:\examples\XML\Farm.xsl")
Debug.Print xmlDoc.transformNodeToObject(xslDoc, response)
%>

	Develop Web Pages
	Server Pages and Scripting
	ASP, JSP and ABAP Servlets
	CGI
	Active Server pages (ASP and ASP.NET)
	Java Server Pages, JSP
	Business Server Pages (BSP)
	Server Components
	Java Servlets
	(Demon
	EJB - Enterprise Java Beans
	JAVA, COM and ABAP

	Web Pages With Active Server Pages
	ASP Hello World
	Executing VB Script
	Sending HTML Formatting
	Capturing Commandline Parameters
	Global.asa – The ASP Autoexec File
	ASP Application Variables
	Example: Display Server File List With ASP

	Web Pages With Java Server Pages and Servlets
	Java
	Java Utilities
	Java
	Java Utilities

	Web Pages With XSL Stylesheets and XML
	XSL Is Simple
	Our Goal: An Inventory Table of Animals
	Building The XML Farm
	XSL – Step-by-step
	XSL Templates
	XSL Applied To the Farm

